

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROVINSI TAHUN 2015 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT
 18 April 2015

BAGIAN A: SOAL ISIAN SINGKAT

1. Banyak faktor persekutuan dari 145152 dan 544320 yang merupakan bilangan genap positif adalah

Pembahasan:

Untuk mengetahui banyak faktor persekutuan dari 145152 dan 544320 yang merupakan bilangan genap positif, perlu kita ketahui terlebihdulu tentang FPB dari keduanya, yakni

Dengan Algoritma Euclid:
$\operatorname{FPB}(\mathbf{5 4 4 3 2 0}, \mathbf{1 4 5 1 5 2}) \quad \Rightarrow \mathbf{5 4 4 3 2 0}=3 \times \mathbf{1 4 5 1 5 2}+\mathbf{1 0 8 8 6 4}$
$145152=1 \times 108864+36288$
$108864=3 \times 36288+0$
Sehingga, $\operatorname{FPB}(544320,145152)=36288=2^{6} \times 3^{4} \times 7$

No.	Rincian	Keterangan
1	2^{6}	artinya ada 6 bilangan genap, yaitu $2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}$, dan 2^{6}
2	3^{4}	artinya ada 4 bilangan ganjil, yaitu $3^{1}, 3^{2}, 3^{3}$, dan 3^{4}
3	7	artinya ada 1 bilangan ganjil, yaitu 7^{1}

Jadi, Banyak faktor persekutuan dari 145152 dan 544320 adalah sebanyak 60
2. Pak Tani memiliki 500 ekor ayam yang terdiri dari ayam pedaging dan ayam petelur. Sebagian ayam berwarna merah dan sebagian lagi berwarna putih. Banyak ayam petelur dan berwarna merah adalah 100 ekor. Jika diambil satu ekor secara acak, maka peluang untuk mendapatkan ayam pedaging adalah sama dengan peluang untuk mendapatkan ayam berwarna putih, yaitu sebesar $\frac{3}{5}$. Banyak ayam pedaging yang berwarna merah adalah

Pembahasan:

Diketahui banyak ayam yang dimiliki Pak Tani = 500 ekor ayam banyak ayam petelur berwarna merah $=100$ ekor ayam
Misalkan banyak ayam pedaging warna merah $=d_{m}$ banyak ayam pedaging warna putih $=d_{p}$ banyak ayam pedaging warna merah $=t_{m}$ banyak ayam pedaging warna merah $=t_{p}$
maka, $d_{m}+d_{p}+t_{m}+t_{p}=500$

$$
t_{m}=100
$$

kemudian perhatikan kalimat dari: maka peluang untuk mendapatkan ayam pedaging adalah sama dengan peluang untuk mendapatkan ayam berwarna putih, yaitu sebesar $\frac{3}{5}$.
$\frac{d_{m}+d_{p}}{500}=\frac{3}{5}=\frac{d_{p}+t_{p}}{500}$
atau
$\left.\begin{array}{ll}d_{m}+d_{p}=300 & \Rightarrow d_{p}=\left(300-d_{m}\right) \\ d_{p}+t_{p}=300 & \Rightarrow\left(300-d_{m}\right)+t_{p}=300\end{array}\right\} d_{m}=t_{p}$
sehingga didapat,

$$
\begin{array}{rlr}
d_{m}+d_{p}+t_{m}+t_{p}=500 & \Rightarrow d_{m}+\left(300-d_{m}\right)+100+d_{m}=500 \\
& \Rightarrow & d_{m}+400=500 \\
& \Rightarrow & d_{m}=100
\end{array}
$$

Jadi, banyak ayam pedaging yang berwarna merah adalah 100 ekor
3. Diketahui $A B C D$ adalah segiempat talibusur pada lingkaran yang memiliki jari-jari luar 5 cm . Diketahui $A D$ diameter lingkaran, panjang $A B=5 \mathrm{~cm}$, dan panjang $A C=6 \mathrm{~cm}$. Keliling $A B C D$ adalah cm .

Pembahasan:

Perhatikan ilustrasi gambar berikut.

Perhatikan $\triangle A C D$ siku-siku di titik C, karena sudud keliling yang menghadap diameter lingkaran, sehingga dengan Dalil Phytagoras didapat panjang $C D=8 \mathrm{~cm}$.
Perhatikan $\triangle A B D$ siku-siku di titik B, karena sudud keliling yang menghadap diameter lingkaran, sehingga dengan dalil phytagoras didapat panjang $B D=\sqrt{10^{2}-5^{2}}=5 \sqrt{3} \mathrm{~cm}$.
Kemudian mencari panjang $B C$ dengan menggunakan Dalil Ptolomeus, yakni:

$$
\begin{aligned}
B C \times A D+A B \times C D & =A C \times B D \\
B C \times 10+5 \times 8 & =6 \times 5 \sqrt{3} \\
10 B C+40 & =30 \sqrt{3} \\
10 B C & =30 \sqrt{3}-40 \\
B C & =3 \sqrt{3}-4
\end{aligned}
$$

Dengan demikian Keliling segi-empat $A B C D=A B+B C+C D+A D$

$$
\begin{aligned}
& =5+(3 \sqrt{3}-4)+8+10 \\
& =19+3 \sqrt{3}
\end{aligned}
$$

Jadi, Keliling $A B C D$ adalah $(19+3 \sqrt{3}) \mathrm{cm}$
4. Rani dan Susi masing-masing memilih empat angka berbeda yang merupakan anggota dari $\{1,2,3,6,8,9\}$ untuk menyusun dua buah bilangan dua angka. Jika mereka masing-masing menjumlahkan kedua bilangan yang disusun, maka hasilnya adalah tiga angka. Notasikan jumlah bilangan yang diperoleh Rani dan Susi berturut-turut dengan r dan s. Diketahui bahwa r bersisa 2 jika dibagi 47. Jika s memiliki nilai tersbesar yang mungkin, maka $r+s=\ldots$.

Pembahasan:

Diketahui empat angka berbeda yang aka dipilih adalah $\{1,2,3,6,8,9\}$ untuk menyusun dua buah bilangan dua angka
Misalkan angka yang dipilih Rani adalah a, b, dan c, d
angka yang dipilih Susi adalah h, i, dan j, k

Pilihan empat angka $\{1,2,3,6,8,9\}$	
$\begin{aligned} & a b \\ & c d \\ & \hline \end{aligned}$	hi $j k$
efg	$o p q$
ef $g=r$	$o p q=s$
Diketahui bahwa r bersisa 2 jika dibagi 47 $\frac{r}{47}=n \text { sisa 2, } n \text { bilangan bulat }$ Nilai n yang mungkin adalah 3, sehingga $\begin{aligned} r=47 n+2 \quad & \Rightarrow r=47(3)+2 \\ & \Rightarrow r=141+2 \\ & \Rightarrow r=143 \end{aligned}$ sehingga: angka b yang mungkin 1 atau 2 angka d yang mungkin 1 atau 2	s memiliki nilai tersbesar yang mungkin angka i yang mungkin 3 atau 6 angka k yang mungkin 3 atau 6 begitu juga angka h yang mungkin 8 atau 9 angka j yang mungkin 8 atau 8 $\begin{array}{r} 96 \\ \frac{83}{179} \quad \Rightarrow s=179 \end{array}$

begitu juga angka a yang mungkin 6 atau 8 angka c yang mungkin 6 atau 8		
81		
$\frac{62}{143}$	$\Rightarrow r=143$	
Dengan demikian $r=143$ dan $s=179$		

Jadi, $r+s=322$
5. Diketahui x dan y adalah dua bilangan bulat. Banyak anggota himpunan penyelesaian dari persamaan

$$
4 x+y+4 \sqrt{x y}-36 \sqrt{x}-18 \sqrt{y}+80=0
$$

adalah ...

Pembahasan:

Diketahui $4 x+y+4 \sqrt{x y}-36 \sqrt{x}-18 \sqrt{y}+80=0$

$$
\begin{aligned}
& (2 \sqrt{x}+\sqrt{y})^{2}-36 \sqrt{x}-18 \sqrt{y}+80=0 \\
& (2 \sqrt{x}+\sqrt{y})^{2}-18(2 \sqrt{x}+\sqrt{y})+80=0 \\
& {[(2 \sqrt{x}+\sqrt{y})-8][(2 \sqrt{x}+\sqrt{y})-10]=0}
\end{aligned}
$$

Sehingga didapat $2 \sqrt{x}+\sqrt{y}=8$ atau $2 \sqrt{x}+\sqrt{y}=10$

Bentuk Persamaan	Nilai \boldsymbol{x} dan \boldsymbol{y} yang Mungkin	Katerangan
$2 \sqrt{x}+\sqrt{y}=8$	$(0,64),(1,36),(4,16),(9,4),(16,0)$	ada 5
$2 \sqrt{x}+\sqrt{y}=10$	$(0,100),(1,64),(4,36),(9,16),(16,4),(25,0)$	ada 6
Total		ada 11

Jadi, Banyak anggota himpunan penyelesaian yang dimaksud adalah ada 11
6. Diketahui barisan himpunan beranggotakan beberapa bilangan asli berurutan sedemikian rupa sehingga banyak anggota himpunan-himpunan tersebut membentuk barisan aritmatika. Empat suku pertama barisan himpunan tersebut adalah $\{1\},\{2,3,4\},\{5,6,7,8,9\},\{10,11,12,13,14,15,16\}$. Bilangan 2015 berada pada suku/himpunan ke

Pembahasan:

Diketahui barisan himpunan adalah $\{1\},\{2,3,4\},\{5,6,7,8,9\},\{10,11,12,13,14,15,16\}$, $\{17,18,19,20,21,22,23,24,25\}$,

Perhatikan tabel berikut

Suku/himpunan ke-n	Anggota himpunan yang pertama pada himpunan ke- n	Banyak anggota pada himpunan ke-n
1	1	1
2	2	3
3	5	5
4	10	7
5	17	9
....
	$\begin{aligned} & 1, \quad 2, \quad 5, \quad 10, \quad 17, \ldots \\ & 1, \quad 3, \quad 5, \quad 7, \ldots \ldots \\ & 2, \quad 2, \quad 2, \ldots . \\ & U_{n}=1+\frac{(n-1)}{2}\left(2 a_{2}+(n-2) b_{2}\right) \\ & U_{n}=1+\frac{(n-1)}{2}(2(1)+(n-2) 2) \\ & U_{n}=1+(n-1)^{2} \end{aligned}$	$\begin{gathered} 1,3,5,7,9, \ldots . \\ 2,2,2,2, \ldots \\ U_{n}=a+(n-1) b \\ U_{n}=1+(n-1) 2 \\ U_{n}=2 n-1 \end{gathered}$
	Sehingga untuk bilangan 2015 $\begin{aligned} & U_{n}=1+(n-1)^{2} \\ & 2015=1+(n-1)^{2} \\ & 2014=(n-1)^{2} \end{aligned}$ Karena 2015 terletaknya bukan anggota himpunan yang pertama pada himpunan ke-n, maka mencari bilangan < 2015 yang merupakan akar pankat sempurna, yaitu 1936, sehingga menjadi $\begin{aligned} & (n-1)^{2}=1936 \\ & n-1=44 \\ & n=45 \end{aligned}$	
n=45	$\begin{aligned} & U_{n}=1+(n-1)^{2} \\ & U_{45}=1+(45-1)^{2} \\ & U_{45}=1+(44)^{2} \\ & U_{45}=1+1936 \\ & U_{45}=1937 \end{aligned}$	Karena $n=45$, maka banyak anggota pada suku ke-45 adalah $\begin{gathered} U_{n}=2 n-1 \\ U_{45}=2(45)-1 \\ U_{45}=89 \end{gathered}$ Sehingga urutan anggotanya terletak pada $2015-1937=78$

7. Diketahui $\triangle A B C$ siku-siku di A, serta lingkaran yang berpusat di O menyinggung sisi $A B$ dan $A C$ berturut-turut di S dan T. Selanjutnya, $S U$ dan $T V$ adalah diameter lingkaran. Jika r adalah jari-jari lingkaran, maka luas daerah yang diarsir adalah satuan luas.

Pembahasan:

Perhatikan gambar berikut!

Perhatikah $\triangle V O U$ (ada 3 segitiga warna biru) adalah segitiga sama kaki dengan ukuran kakikakinya $=r$
Luas daerah $\operatorname{TSVU}($ warna kuning $)=\frac{3}{4}$ Luas lingkaran + Luas $\triangle V O U$

$$
=\frac{3}{4} \times \pi r^{2}+\frac{1}{2} \times r^{2}
$$

Kemudian mencari luas $\triangle \mathrm{ABC}$, yaitu:

$$
\text { Luas } \begin{aligned}
\triangle A B C & =\frac{1}{2} \times 3 r \times 3 r \\
& =\frac{9}{2} r^{2}
\end{aligned}
$$

Sehingga, Luas yang diarsir $=$ Luas $\triangle A B C-$ Luas daerah $T S V U$ (warna kuning)

$$
\begin{aligned}
& =\frac{9}{2} r^{2}-\left(\frac{3}{4} \times \pi r^{2}+\frac{1}{2} \times r^{2}\right) \\
& =\frac{1}{4} r^{2}(16-3 \pi)
\end{aligned}
$$

Jadi, luas daerah yang diarsir adalah $\frac{1}{4} r^{2}(16-3 \pi)$ satuan luas
8. Delegasi perwakilan pelajar Kota Bahagia ke suatu pertemuan pelajar nasional terdiri dari 5 orang. Ada 10 siswa laki-laki dan 10 siswa perempuan yang mencalonkan diri untuk menjadi anggota delegasi. Jika disyaratkan bahwa paling sedikit seorang anggota delegasi harus laki-laki, maka banyak cara untuk memilih delegasi tersebut adalah

Pembahasan:

Diketahui terdiri dari 5 orang yang akan dilegasikan dari 10 siswa laki-laki dan 10 siswa perempuan. Syarat dari peserta terpilih paling sedikit ada 1 orang siswa laki-laki.

Berdasarkan informasi tersebut, maka ada 5 kemungkian yang akan terjadi, yakni:

1) Apabila yang terpilih 1 siswa laki-laki, maka ada 4 perempuan yang yang terpilih, sehingga banyak cara yang mungkin adalah

$$
{ }_{10} \mathrm{C}_{1} \times{ }_{10} \mathrm{C}_{4}=10 \times \frac{10!}{(10-4) \times 4!}=10 \times \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}=10 \times(10 \times 3 \times 7)=2100
$$

2) Apabila yang terpilih 2 siswa laki-laki, maka ada 3 perempuan yang yang terpilih, sehingga banyak cara yang mungkin adalah
${ }_{10} \mathrm{C}_{2} \times{ }_{10} \mathrm{C}_{3}=\frac{10!}{(10-2)!\times 2!} \times \frac{10!}{(10-3)!\times 3!}=\frac{10 \times 9}{2 \times 1} \times \frac{10 \times 9 \times 8}{3 \times 2 \times 1}=45 \times(10 \times 3 \times 4)=5400$
3) Apabila yang terpilih 3 siswa laki-laki, maka ada 2 perempuan yang yang terpilih, sehingga banyak cara yang mungkin adalah
${ }_{10} \mathrm{C}_{3} \times{ }_{10} \mathrm{C}_{2}=\frac{10!}{(10-3)!\times 3!} \times \frac{10!}{(10-2)!\times 2!}=\frac{10 \times 9 \times 8}{3 \times 2 \times 1} \times \frac{10 \times 9}{2 \times 1}=(10 \times 3 \times 4) \times 45=5400$
4) Apabila yang terpilih 4 siswa laki-laki, maka ada 1 perempuan yang yang terpilih, sehingga banyak cara yang mungkin adalah

$$
{ }_{10} \mathrm{C}_{4} \times{ }_{10} \mathrm{C}_{1}=\frac{10!}{(10-4)!\times 4!} \times 10=\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} \times 10=(10 \times 3 \times 7) \times 10=2100
$$

5) Apabila yang terpilih 5 siswa laki-laki, maka ada 0 perempuan yang yang terpilih, sehingga banyak cara yang mungkin adalah

$$
{ }_{10} \mathrm{C}_{5}=\frac{10!}{(10-5)!\times 5!}=\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}=2 \times 9 \times 2 \times 7=252
$$

Dengan demikian banyak cara seluruhnya $=2100+5400+5400+2100+252=15252$
Jadi, banyak cara untuk memilih delegasi tersebut adalah 15252
9. Jika salah satu akar persamaan kuadrat $2 x^{2}+(c-2015) x+168=0$ adalah bilangan prima, maka nilai c terbesar yang mungkin adalah ...

Pembahasan:

Diketahui persamaan kuadrat $2 x^{2}+(c-2015) x+168=0$
Jika x_{1} dan x_{2} adalah memiliki akar-akar penyelesian dari persamaan tersebut, maka berlaku hubungan antara x_{1} dan x_{2} adalah sebagai berikut.
$x_{1}+x_{2}=-\frac{b}{a} \quad$ dan $\quad x_{1} \cdot x_{2}=\frac{c}{a}$
Oleh karena $a=2$ dan $c=168$, maka akar prima 2 tidak mungkin terpenuhi. Sehingga akar prima yang mungkin adalah bilangan prima selain 2, yakni sebagai berikut:

1) Untuk salah satu akarnya bilangan 3 , maka $\frac{168}{3}=56$, sehingga persamaannya menjadi

$$
\begin{array}{ll}
2 x^{2}+(c-2015) x+168=0 & \Rightarrow(2 x-56)(x-3)=2 x^{2}-62 x+168=0 \\
\text { Sehingga }(c-2015)=-62 & \Rightarrow c=2015-62=1953
\end{array}
$$

2) Untuk salah satu akarnya 5 , maka $\frac{168}{5}$, sehingga persamaannya menjadi

$$
2 x^{2}+(c-2015) x+168=0 \quad \Rightarrow\left(2 x-\frac{168}{5}\right)(x-5)=2 x^{2}-\frac{218}{5} x+168=0
$$

Sehingga $(c-2015)=-\frac{218}{5} \Rightarrow c=2015-\frac{218}{5}=\frac{9857}{5}=1971,4$
3) Untuk salah satu akarnya 7 , maka $\frac{168}{7}=24$, sehingga persamaannya menjadi

$$
\begin{array}{ll}
2 x^{2}+(c-2015) x+168=0 & \Rightarrow(2 x-24)(x-7)=2 x^{2}-38 x+168=0 \\
\text { Sehingga }(c-2015)=-38 & \Rightarrow c=2015-38=1977
\end{array}
$$

4) Untuk salah satu akarnya 11 , maka $\frac{168}{11}$, sehingga persamaannya menjadi

$$
\begin{array}{ll}
2 x^{2}+(c-2015) x+168=0 & \Rightarrow\left(2 x-\frac{168}{11}\right)(x-11)=2 x^{2}-\frac{410}{11} x+168=0 \\
\text { Sehingga }(c-2015)=-\frac{410}{11} & \Rightarrow c=2015-\frac{410}{11}=\frac{21755}{11}=1977,727
\end{array}
$$

5) Untuk salah satu akarnya 13 , maka $\frac{168}{13}$, sehingga persamaannya menjadi

$$
\begin{array}{ll}
2 x^{2}+(c-2015) x+168=0 & \Rightarrow\left(2 x-\frac{168}{13}\right)(x-13)=2 x^{2}-\frac{506}{13} x+168=0 \\
\text { Sehingga }(c-2015)=-\frac{506}{13} & \Rightarrow c=2015-\frac{506}{13}=\frac{25689}{13}=1976,077
\end{array}
$$

6) Untuk salah satu akarnya 17 , maka $\frac{168}{17}$, sehingga persamaannya menjadi

$$
\begin{array}{ll}
2 x^{2}+(c-2015) x+168=0 & \Rightarrow\left(2 x-\frac{168}{17}\right)(x-17)=2 x^{2}-\frac{746}{17} x+168=0 \\
\text { Sehingga }(c-2015)=-\frac{746}{17} & \Rightarrow c=2015-\frac{746}{17}=\frac{33509}{17}=1971,117
\end{array}
$$

Dengan demikian, dari uraian ke-6 bilangan prima di atas didapat bahwa nilai c terbesar ketika bilangan prima bernilai 11
Jadi, nilai c terbesar yang mungkin adalah $\frac{21755}{11}$ atau 1977,727
10. Jika kurva parabola $y=x^{2}+4 x-5$ dicerminkan terhadap garis $y=x$, kemudian digeser ke arah sumbu-X positif sejauh 2 satuan, maka diperoleh kurva dengan persamaan

Pembahasan:

Diketahui persamaan parabola $y=x^{2}+4 x-5$
kemudian dicermenkan terhadap garis $y=x$ artinya kurvanya menjadi $x=y^{2}+4 y-5$

kemudian digeser ke arah sumbu-X positif sejauh 2 satuan, artinya titik potong pada sumbu-X menjadi di titik $(-5+2,0):(-3,0)$ sehingga persamaannya menjadi $x=y^{2}+4 y+(-5+2)$

Disusun oleh : Mohammad Tohir Jika ada saran, kritik maupun masukan silahkan kirim ke- My email: suidhat.family@gmail.com Terima kasih.
My blog : http://matematohir.wordpress.com/ Mathematics Sport; http://m2suidhat.blogspot.com/

OLIMPIADE SAINS NASIONAL SMP
 SELEKSI TINGKAT PROVINSI TAHUN 2015 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT
 18 April 2015

BAGIAN B: SOAL URAIAN

1. Diberikan himpunan $A=\{11,12,13, \ldots, 30\}$. Berapakah banyak himpunan bagian dari A yang memiliki 4 anggota sehingga jumlah semua anggota tersebut habis dibagi 4 ?

Pembahasan:

Diketahui himpunan $A=\{11,12,13, \ldots . .30\}$.
Kemudian akan dipilih 4 anggota sehingga jumlah semua anggota tersebut habis dibagi 4. Hal ini kita bisa menggunakan prinsip hasil habis dibagi suatu bilangan, yaitu suatu bilangan bila dibagi 4 mempunyai sisa pembagi sebanyak 4 , yaitu $0,1,2$, dan 3 dengan rindian sebagai berikut:

1) Himpunan yang sisa pembaginya 0 dimisalkan K, sehingga $K=\{12,16,20,24,28\}$
2) Himpunan yang sisa pembaginya 1 dimisalkan L, sehingga $L=\{13,17,21,25,29\}$
3) Himpunan yang sisa pembaginya 2 dimisalkan M, sehingga $M=\{14,18,22,26,30\}$
4) Himpunan yang sisa pembaginya 3 dimisalkan N, sehingga $N=\{11,15,19,23,27\}$

Dengan demikian, banyak himpunan bagian dari A yang memiliki 4 anggota sehingga jumlah semua anggota tersebut habis dibagi 4 terdiri dari 3 kasus berbeda, yakni sebagai berikut
Kasus 1: 4 anggota dari himpunan K, L, M, dan N

1. Kemungkinan I: Himpunan K

Karena banyaknya anggota himpunan K ada sebanyak 5 bilanangan, maka untuk mengetahui banyaknya jumlah 4 bilangan berbeda habis dibagi 4, sama halnya dengan menyusun 4 bilangan berbeda dari 5 bilangan yang tersedia, yaitu ${ }_{5} C_{4}=5$
Contoh: $12+16+20+24=72$
2. Kemungkinan II: Himpunan L

Karena banyaknya anggota himpunan L ada sebanyak 5 bilanangan, maka banyak cara yang mungkin adalah ${ }_{5} C_{4}=5$
Contoh: $13+17+21+25=76$
3. Kemungkinan III: Himpunan M

Karena banyaknya anggota himpunan M ada sebanyak 5 bilanangan, maka banyak cara yang mungkin adalah ${ }_{5} C_{4}=5$
Contoh: $14+18+22+26=80$
4. Kemungkinan IV: Himpunan N

Karena banyaknya anggota himpunan N ada sebanyak 5 bilanangan, maka banyak cara yang mungkin adalah ${ }_{5} C_{4}=5$
Contoh: $11+15+19+23=68$
Kasus 2: 2 anggota dari Himpunan tertentu dengan 2 anggota himpunan lainnya.

1. Kemungkinan I: 2 anggota dari Himpuan K dan 2 angota dari Himpunan M Untuk mengetahui banyaknya jumlah 4 bilangan berbeda habis dibagi 4, sama halnya dengan menyusun 4 bilangan berbeda dari 2 masing-masing bilangan yang tersedia di Himpuan K dan M, yaitu ${ }_{5} C_{2} \times{ }_{5} C_{2}=10 \times 10=100$
Contoh: $12+16+14+18=60$
2. Kemungkinan II: 2 anggota dari Himpunan L dan 2 anggota dari hmpunan N

Untuk mengetahui banyaknya jumlah 4 bilangan berbeda habis dibagi 4 , sama halnya dengan menyusun 4 bilangan berbeda dari 2 masing-masing bilangan yang tersedia di himpunan L dan N, yaitu ${ }_{5} C_{2} \times{ }_{5} C_{2}=10 \times 10=100$
Contoh: $13+17+11+15=56$
Kasus 3:2 anggota dari himpunan tertentu, 1 anggota dari himpunan lainnya dan 1 anggota lagi dari himpunan lainnya yang lain.

1. Kemungkinan I: 2 anggota dari himpunan K dengan 1 anggota dari himpunan L dan 1 anggota dari himpunan N
Sehingga, banyak cara yang mungkin adalah ${ }_{5} C_{2} \times{ }_{5} C_{1} \times{ }_{5} C_{1}=10 \times 5 \times 5=250$
Contoh: $12+16+13+11=52$
2. Kemungkinan II: 2 anggota dari himpunan L dengan 1 angota dari himpunan M dan 1 anggota dari himpunan K
Sehingga, banyak cara yang mungkin adalah ${ }_{5} C_{2} \times{ }_{5} C_{1} \times{ }_{5} C_{1}=10 \times 5 \times 5=250$
Contoh: $13+17+14+12=56$
3. Kemungkinan III: 2 anggota dari himpunan M dengan 1 angota dari himpunan N dan 1 anggota dari himpunan L
Sehingga, banyak cara yang mungkin adalah ${ }_{5} C_{2} \times{ }_{5} C_{1} \times{ }_{5} C_{1}=10 \times 5 \times 5=250$
Contoh: $14+18+11+13=56$
4. Kemungkinan IV: 2 anggota dari himpunan N dengan 1 angota dari himpunan K dan 1 anggota dari himpunan M
Sehingga, banyak cara yang mungkin adalah ${ }_{5} C_{2} \times{ }_{5} C_{1} \times{ }_{5} C_{1}=10 \times 5 \times 5=250$
Contoh: $11+15+12+14=52$
"Sedangkan untuk 3 anggota dari himpunan tertentu dengan 1 anggota dari himpunan yang lainnya tidak terpenuhi"
Oleh karena itu, total banyaknya cara seluruh kasus yang ada adalah sebagai berikut:
Banyaknya kasus $1+$ banyak kasus $2+$ banyak kasus $3=5 \times 4+100 \times 2+250 \times 4$

$$
=20+200+1.000
$$

$$
=1.220
$$

Jadi, banyak himpunan bagian dari A yang memiliki 4 anggota sehingga jumlah semua anggota tersebut habis dibagi 4 adalah 1.220 cara
2. Pada gambar berikut, bangun $A B C D$ adalah persegi, bangun $E F G H$ persegi panjang dan luas dua bangun ini sama yaitu $144 \mathrm{~cm}^{2}$. Garis $B C$ dan garis $E F$ berpotongan di titik J dan perbandingan panjang $B J: C J=1: 5$. Diketahui perbandingan panjang $A B: F J: F G=4: 3: 2$. Jika P titik potong diagonal persegi $A B C D$ dan Q titik potong persegi panjang $E F G H$, berapakah panjang $P Q$?

Pembahasan:

Perhatikan hal yang diketahui pada gambar persegi $A B C D$ dan persegi panjang $E F G H$.
Diketahui (1) $B J: C J=1: 5$ dan $B C=B J+C J=12 \mathrm{~cm}$
sehingga didapat $B J=2 \mathrm{~cm}$ dan $C J=10 \mathrm{~cm}$
(2) $A B: F J: F G=4: 3: 2 \quad \Rightarrow A B: F J: F G=4 x: 3 x: 2 x \quad$ (x bilangan bulat) $\Rightarrow A B=12 \mathrm{~cm}$
$\Rightarrow A B=12=4 x \quad \Rightarrow x=3 \mathrm{~cm}$
sehingga didapat $F J=9 \mathrm{~cm}$ dan $F G=6 \mathrm{~cm}$
Kemudian perhatikan ilustrasi gambar berikut

Perhatikan panjang $C J=10 \mathrm{~cm}, F G=6 \mathrm{~cm}$ dan $B C=12 \mathrm{~cm} \quad \Rightarrow C T=J C-F G=10-6=4 \mathrm{~cm}$
Perhatikan panjang $C U=6 \mathrm{~cm}$, panjang $V T=W G=\frac{1}{2} \times F G=\frac{1}{2} \times 6=3 \mathrm{~cm}$
dan panjang $P R=U T=C U-C T=6-4=2 \mathrm{~cm}$
Sehingga didapat dan panjang $Q S=V U=V T-U T=3-2=1 \mathrm{~cm}$
Kemudian persegi $\triangle P S Q$.
Terlebih dulu perhatikan panjang $P U=R T=6 \mathrm{~cm}$ dan $Q V=S U=Q W-J F=12-9=3 \mathrm{~cm}$ sehingga didapat panjang $P S=P U-S U=6-3=3 \mathrm{~cm}$

Dengan demikian panjang $P Q=\sqrt{P S^{2}+Q S^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{9+1}=\sqrt{10} \mathrm{~cm}$
Jadi, panjang $P Q$ adalah $\sqrt{10} \mathrm{~cm}$
3. Pada sebuah permainan disediakan sejumlah kartu bernomor semua bilangan prima berbeda yang bernilai kurang dari 100 dalam suatu wadah tertutup. Permainan dilakukan dengan mengambil 2 kartu secara acak dan memeriksa bilangan yang tertera pada kartu, apakah jumlahnya merupakan bilangan prima atau bukan. Jika jumlahnya bukan bilangan prima, ia diberi kesempatan mencoba kembali sampai total 3 kali pengambilan. Seorang pemain akan memenangkan permainan, jika ia berhasil mendapatkan jumlah prima pada maksimal pengambilan ke tiga. Berapa peluang seorang pemain memenagkan permainan tersebut?

Pembahasan:

Bilangan prima kurang dari 100 adalah sebagai berikut.

2	3	5	7	11	13	17	19	23	29	31	37	
41	43	47	53	59	61	67	71	73	79	83	89	97

Bilangan prima kurang dari 100 adalah sebanyak 25, sehingga menyusun 2 bilangan dari 25 sebanyak ${ }_{25} \mathrm{C}_{2}=300$
Kemudian kita mencari dua bilangan prima ketika dijumlah juga bilangan prima apabila bilangan prima tersebut dijumlah dengan bilangan prima 2, yakni yang memenuhi adalah sebagai berikut

sehingga peluang menang yang mungkin adalah

$$
\frac{8}{{ }_{25} C_{2}}=\frac{8}{300}=\frac{2}{75}
$$

dan peluang tidak menang yang mungkin adalah $\frac{300-8}{300}=\frac{292}{300}=\frac{73}{75}$

Diketahui seorang pemain akan memenangkan permainan, jika ia berhasil mendapatkan jumlah prima pada maksimal pengambilan ke tiga
Ada 3 kasus yang mungkin didapat, yakni sebagai berikut
Kasus1: menang pada pengambilan yang pertama, yakni
Sehingga peluang yang mungkin adalah $\frac{2}{75}$
Kasus 2: menang pada pengambilan yang kedua, yakni
Sehingga peluang yang mungkin adalah $\frac{73}{75} \times \frac{2}{75}=\frac{146}{5625}$
Kasus 3: menang pada pengambilan yang ketiga, yakni
Sehingga peluang yang mungkin adalah $\frac{73}{75} \times \frac{73}{75} \times \frac{2}{75}=\frac{10658}{421875}$
Dengan demikian peluang seluruhnya $=\frac{2}{75}+\frac{146}{5625}+\frac{10658}{421875}=\frac{2 \times 75 \times 75+146 \times 75+10658}{421875}=\frac{32858}{421875}$
Jadi, peluang seorang pemain memenangkan permainan tersebut adalah $\frac{32858}{421875}$

> Disusun oleh : Mohammad Tohir Jika ada saran, kritik maupun masukan silahkan kirim ke- My email: suidhat.family@gmail.com Terima kasih.
> My blog : http://matematohir.wordpress.com/ Mathematics Sport; http://m2suidhat.blogspot.com/

